
*Edited by James M. Kramer and Donald G. Moerman. Last revised May 5, 2005. Published January 16, 2006. This chapter should be cited as:
Moerman, D. G. and Williams, B. D. Sarcomere assembly in C. elegans muscle (January 16, 2006), WormBook, ed. The C. elegans Research
Community, WormBook, doi/10.1895/wormbook.1.81.1, http://www.wormbook.org.

Copyright: © 2006 Donald G. Moerman and Benjamin D. Williams. This is an open-access article distributed under the terms of the
Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original
author and source are credited.
§To whom correspondence should be addressed. E-mail: moerman@zoology.ubc.ca or bdwillms@life.uiuc.edu

Sarcomere assembly in C. elegans
muscle*

Donald G. Moerman§, Department of Zoology, University of British
Columbia, Vancouver, B.C., Canada V6T 1Z4

Benjamin D. Williams Department of Cell and Structural Biology,
University of Illinois, Urbana, IL, USA61801

Table of Contents
1. Introduction ............................................................................................................................ 2
2. Muscle attachments .................................................................................................................. 2
3. Dissection of muscle attachment assembly .................................................................................... 3
4. Initiating a sarcomere leads to distinct assembly dependence pathways for dense bodies and M-lines ....... 4
5. Distinguishing dense bodies from M-lines .................................................................................... 8
6. Spacing of the components ........................................................................................................ 8
7. Is sarcomere assembly in C. elegans a general model of sarcomere assembly? ................................... 12
8. Summary ............................................................................................................................. 12
9. Acknowledgements ................................................................................................................ 13
10. References .......................................................................................................................... 13

Abstract

Sarcomeres within body wall muscle in C. elegans include attachments to the sarcolemma that are
remarkably similar in structure to vertebrate adhesion complexes. Crucial early steps in muscle sarcomere
assembly, a highly orchestrated affair involving many proteins, involve the assembly of these sarcomere
attachments. The steps involved in initiating the correct placement of these attachments and other sarcomere
substructures are poorly understood. Using mutants in C. elegans we are attempting to dissect the various
steps in this process. We review what has been discovered to date and present a model of sarcomere assembly
that initiates at the plasma membrane and involves proteins within muscle, the hypodermis and within the
extracellular matrix.
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1. Introduction

The nematode Caenorhabditis elegans has proven to be a useful system to study the development of muscle
(Waterston, 1988; Moerman and Fire, 1997). Here we review sarcomere assembly, focusing specifically on the early
events that occur at the muscle cell membrane. Myoblasts arise after the end of gastrulation (at 290 min. of
embryonic development; Sulston et al., 1983) and are defined by the accumulation of structural components such as
myosin, actin, vinculin, and integrin (Epstein et al., 1993; Hresko et al., 1994). Myoblasts then migrate to their final
positions in four longitudinal quadrants, each of which is a double row of muscle cells (Hresko et al., 1994;
Schnabel et al., 1997). The myoblasts flatten basally against the hypodermis and laterally against the neighboring
muscle cell. The result is a continuous muscle-muscle junction running down the center of the muscle quadrant that
is flanked on either side by a muscle-hypodermal junction (Hresko et al., 1994). In mid embryogenesis (450 min),
the sarcomere components move to the muscle cell membrane where the muscle-muscle and muscle-hypoderm
junctions converge at the center of the muscle quadrant, and then organize into sarcomeres. At this same time they
form attachment structures that provide a physical linkage laterally between muscles cells and basally between
muscle and hypodermis (Hresko et al., 1994).

2. Muscle attachments

There are three related attachment complexes formed, the muscle-muscle adhesion plaques, and two related
muscle-hypodermal structures termed dense bodies and M-lines. Although the attachment plaques also contribute,
the dense bodies and M-line are primarily responsible for translating the mechanical movement of myofibrillar
components to motion of the whole animal (Francis and Waterston, 1985).

In adult muscle cells both dense bodies and M-lines are finger-like projections that extend from the muscle
cell membrane into the cytoplasm where they ultimately attach to and organize the myofilaments within the
contractile units. This arrangement is illustrated in Figure 1, which shows the overall distribution of C. elegans body
wall muscle and the organization of sarcomeres within muscle. Dense bodies and M-lines attach to actin filaments
and myosin filaments, respectively, and are homologs of the Z-lines and M-lines in vertebrate striated muscle. The
attachment plaques at muscle-muscle junctions are most similar to dense bodies, and anchor the actin filaments of
the last half-I-band to the cell membrane (Francis and Waterston, 1985).

Figure 1. Schematic Diagram of the C. elegans Body-Wall Muscle Structure, and fluorescence microcopy of muscle attachments in embryos and
adults. (A) An adult worm with body-wall muscle quadrants visible (orange). (B) A body-wall cross-section with cuticle, hypodermis, and basal lamina
peeled away to reveal the basal membrane of two body-wall muscle cells. (C) A longitudinal section through a body-wall muscle cell. Dense bodies and
M-lines attach actin thin filaments and myosin thick filaments, respectively, to the basal sarcolemma. (D) Locations of several different muscle attachment
proteins. Loss-of-function for proteins shown in red causes the Pat developmental arrest phenotype. (E-J). PAT-4/ILK and PAT-3 integrin colocalize at
muscle attachments in embryos and adults. (E) A wild-type, 420 min. embryo. PAT-4::GFP localizes to body-wall muscle attachments (arrow). The scale
bar represents 2 µm. (F) The same embryo as that shown in (E) double stained with monoclonal antibodies MH25, recognizing PAT-3 integrin, and MH27,
recognizing hypodermal-hypodermal cell junctions (included for developmental staging and orientation purposes). (G) An overlay of (E) and (F). Areas of
PAT-4::GFP and integrin colocalization appear yellow. (H-J) Detail of body-wall muscle from a rescued pat-4(st551) adult hermaphrodite coexpressing
(H) pat-4::yfp and (E) pat-3::cfp. Dense bodies (arrows), M-lines (arrowheads), and muscle-muscle adhesion plaques (brackets in H) are indicated. (J) An
overlay of panels (H) and (I). Regions in which PAT-3::CFP and PAT-4::YFP colocalize appear white. The scale bar in (H) represents 5 µm. Right-click or
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control-click for larger image.
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Here we discuss early events in the assembly of muscle attachments, so it is important to recognize that all
three types of attachments appear as morphologically similar dense plaques when they are first formed in embryos
(Hresko et al., 1994). This is indicated for dense bodies and M-lines on the right of panel d in Figure 1. It is only
during larval stages that the dense bodies and M-lines extend deeper into the cytoplasm and assume the shape of
finger-like projections from the membrane (Francis and Waterston, 1985). Interestingly, at least for the dense body,
projection from the membrane corresponds with the addition of the membrane-distal component, alpha-actinin
(Francis and Waterston, 1985; Barstead and Waterston, 1991).

3. Dissection of muscle attachment assembly

The extracellular matrix (ECM) receptor PAT-2/PAT-3 integrin (Gettner et al., 1995; B. Williams,
unpublished results) is concentrated at the membrane of attachment plaques, as well as dense bodies and M-lines,
allowing them to transmit mechanical force across the muscle cell membrane to the basal lamina. This force can be
transmitted, either between adjacent muscle cells, or between muscle and hypodermis. Fibrous organelle (FO's)
complexes in the hypodermis, which are similar to hemi-desmosomes, then complete the mechanical linkage to the
cuticular exoskeleton (Francis and Waterston, 1991). Patterning of the muscle to hypodermis linkage may involve
the hypodermal transmembrane protein myotactin at the hypodermal/muscle interface (Hresko et al., 1999). A major
component of the hemidesmosome at hypodermal/muscle and hypodermal/cuticle interfaces is VAB-10/
spectroplakin (Bosher et al., 2003). Also probably present at both sites is the VAB-19/Krank protein (Ding et al.,
2003). The linkage from the epidermis to the cuticle is through cytoplasmic intermediate filaments (e.g., mua-6;
Hapiak et al., 2003). Present only at the hypodermal/cuticle interface are the transmembrane proteins, MUA-3 and
MUP-4 (Bercher et al., 2001; Hong et al., 2001), which mediate the final step in the mechanical linkage to the
cuticle.

Just as occurs in vertebrate integrin-mediated attachments between the ECM and the actin cytoskeleton, dense
bodies contain cytoskeletal adaptor proteins such as vinculin, alpha-actinin, talin, PINCH, MIG-2, integrin linked
kinase (ILK), and actopaxin, which complete the linkage between the cytoplasmic domain of integrin and actin
filaments (see Figure 2; Francis and Waterston, 1985; Barstead and Waterston, 1991; Moulder et al., 1996, Hobert et
al., 1999, Rogalski et al., 2000; Mackinnon et al., 2002; Lin et al., 2003). The M-lines contain many of the same
membrane-proximal adaptors, but lack vinculin. The membrane-distal region of the M-line lacks the dense body
protein alpha-actinin, but does include the M-line specific protein UNC-89 (Benian et al., 1996). Given their protein
composition and functions, dense bodies and M-lines are both analogous and homologous to vertebrate integrin
mediated adhesion plaques, commonly called focal adhesions (FA's) in tissue culture cells (Figure 2; for review see
Burridge and Chrzanowska-Wodnicka, 1996; and Geiger and Bershadsky, 2001). In effect, these attachment
complexes and associated myofilaments can be thought of as a highly ordered set of focal adhesions that offer a
unique opportunity for genetic analysis. The regulatory steps that coordinate the assembly of adherens junction
components into functional attachment structures capable of enduring and transmitting mechanical stress are largely
undefined. Genetic screens for mutants with defects in sarcomere assembly have proven a powerful aid in
identifying novel focal adhesion proteins and for the investigation of their functions in vivo (for example, see
Williams and Waterston, 1994). Mutants with early, severe defects in sarcomere assembly fail to begin normal
embryonic movements at mid-embryogenesis, and soon after this point the morphogenetic process of elongation
stops prematurely at the two fold length. This is referred to as the Pat developmental arrest phenotype (Paralyzed,
Arrested elongation at Two fold).
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Figure 2. Comparison between vertebrate focal adhesions and C. elegans dense bodies. Modified from Figure 5 in Cox and Hardin (2004). It should be
noted in the dense body diagram that PAT-4/ILK is shown making contact with the cytoplasmic domain of the PAT-3 integrin subunit because this
interaction has been reported for the vertebrate homologs. To date we have failed to observe this binding interaction in C. elegans, so the nature of any
linkage between PAT-3 integrin and the complex of proteins that bind to PAT-4 remains to be elucidated Similarly, the potential interactions between
PAT-3 integrin, CeTalin, alpha-actinin and DEB-1/vinculin are based upon the binding interactions demonstrated for the vertebrate homologs. See text for
details.

4. Initiating a sarcomere leads to distinct assembly dependence pathways for
dense bodies and M-lines

Genetic dissection of muscle attachment assembly has allowed us to construct distinct "assembly dependence"
pathways for dense body and M-lines (see Table 1 and Figure 3). These pathways differ in their membrane-distal
components, probably reflecting the separate roles of dense bodies and M-lines in anchoring either thin or thick
filaments to the cell membrane. Within each pathway, location of one protein above another with an intervening
arrow means that the top protein is recruited to attachments independent of the protein below, or any of the other
proteins further down the pathway. Reciprocally, the recruitment of the protein below is dependent upon the protein
above. This diagram therefore shows the results of a genetic epistasis analysis of "assembly dependence". It is
important to note that the arrows indicate specific requirements for protein recruitment in vivo, rather than evidence
of direct protein-protein binding in teractions. Proteins within parallel branches in the pathway are recruited
independent of one another to attachments. Conversely, two proteins located at the same level in the pathway (i.e.,
not separated by an arrow) are mutually dependent on each other for recruitment.

Figure 3. "Assembly dependence" pathways for dense bodies and M-lines. See text for details.
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Table 1. Muscle cell phenotype in Pat mutants

Genes Cell polarization Myosin
organization

Actin
organization

Class I
unc-52 (perlecan)
pat-2 (alpha-integrin)
pat-3 (beta-integrin)

No No No

Class II
pat-34 (ILK)
unc-97 (PINCH)
unc-112 (MIG-2)
pat-6 (Actopaxin)
pat-11

Yes No No

Class III
deb-1 (vinculin)
pat-9
pat-12

Yes Yes Yes

Class IV
lev-11 (Tropomyosin)
egl-19 (L-type calcium channel)
tnc-1 (troponin C)
mup-2 (troponin T)

Yes Yes Yes

Class V
myo-3 (myosin heavy chain)

Yes No Yes

Modified from Williams and Waterston (1994).

We have also included one "counter current" dashed arrow in each of the pathways. These arrows indicate
more subtle requirements for proper attachment assembly than gross recruitment, as we describe in more detail
below. The first protein to consider is UNC-52/perlecan, which is found in the basement membrane between the
body wall muscle cells and the hypodermis, and is concentrated at muscle cell dense bodies and M-lines (Francis
and Waterston, 1991; Rogalski et al., 1993; Mullen et al., 1999). UNC-52/perlcan is at the top of each pathway
because protein-null mutations in the unc-52 gene block all subsequent steps in sarcomere development, including
the next step, which is the polarization of integrin to the basal membrane and its subsequent aggregation, (for each
of the four muscle quadrants) into a stripe of small, isotropically arranged focal contacts (Figure 1E–G). At this
stage, UNC-52 is normally organized in a corresponding stripe within the adjacent basal lamina. (Rogalski et al.,
1993; Hresko et al., 1994; Williams and Waterston, 1994; Mullen et al., 1999). The interaction of integrin and
perlecan, either directly or indirectly, is a key early event in the assembly of these attachment structures. While there
is no evidence in C. elegans for a direct interaction of UNC-52 and integrin there is evidence for a direct
protein-protein interaction between integrin and perlecan in vertebrates (Hayashi et al., 1992; Chakravarti et al.,
1995; Brown et al., 1997). The PAT-2/PAT-3 integrin heterodimer is next in the pathway because removal of
integrin does not block UNC-52/perlecan deposition in the basal lamina, but does block the recruitment of all other
attachment proteins and myofilaments to the muscle cell membrane (Rogalski et al., 1993; Hresko et al., 1994;
Williams and Waterston, 1994).

During subsequent steps of normal attachment assembly, other components are recruited to the focal contacts,
and as the nascent complexes mature, they enter into a highly ordered array of recognizable dense bodies and
M-lines. We have shown that the recruitment of UNC-112/Mig-2 (Rogalski et al., 2000) and PAT-4/ILK
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(Mackinnon et al., 2002) are mutually dependent, but that both are required for the recruitment of PAT-6/actopaxin
(Lin et al., 2003). The three proteins form a complex, UNC-112/Mig-2 and PAT-6/actopaxin binding to the amino
portion of PAT-4/ILK (Figure 4). Interestingly, we have found that PAT-6 protein is not detectable in pat-4 mutants,
suggesting that the stability of PAT-6/actopaxin may be dependent upon its entry into a complex with PAT-4/ILK
(Lin et al., 2003).

Figure 4. Interactions between UNC-112, UNC-97, PAT-4, PAT-6 and UNC-98 as determined by yeast two-hybrid analysis.

DEB-1/vinculin is placed in a parallel branch because its recruitment to attachments is independent of
UNC-112, PAT-4 and PAT-6, and reciprocally, the recruitment of UNC-112, PAT-4 and PAT-6 is not dependent
upon DEB-1/vinculin (Rogalski et al., 2000; Mackinnon et al., 2002; Lin et al., 2003). This feature may reflect
vinculin's involvement in the separate "classical" linkage between integrin and the cytoskeleton involving talin and
α-actinin (illustrated in Figure 5). Actin filaments are placed at the convergence of the UNC-112, PAT-4, PAT-6
and the DEB-1 branches because removal of any of these four proteins blocks the normal recruitment of actin
filaments to the basal membrane. Similarly, myosin thick filaments are at the bottom of the M-line pathway because
removal of any of the upstream components blocks thick filament recruitment to the cell membrane.

Figure 5. Two different linkage pathways between integrin and actin filaments. (Left) The classic talin linkage, including talin, vinculin and
alpha-actinin. (Right) Linkage through the PAT-4/ILK complex.

To this point we have indicated the assembly dependencies between proteins as revealed by substantial
disruptions in protein recruitment to nascent attachments. Our genetic analysis has also revealed additional
dependencies that are subtler, but nevertheless crucial for proper attachment formation. Although the removal of
UNC-112, PAT-4 or PAT-6 does not affect integrin's polarization to the basal membrane and entering nascent focal
contacts, removing any of these members of the PAT-4 complex does disrupt the refinement of integrin patterning
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within the cell membrane. In these mutants integrin never enters the recognizable striated arrays that correspond to
dense bodies and M-lines (Rogalski et al., 2000; Mackinnon et al., 2002; Lin et al., 2003). We indicate this more
subtle type of assembly dependence with a dashed arrow (Figure 3) in both the dense body and M-line pathways that
extends from the PAT-4 complex back to integrin. The relationships indicated by these counter-current arrows are
perhaps not surprising. The complexity of these muscle attachments seem almost certain to have many such
interdependencies that will preclude a simple linear pathway of assembly.

At least three LIM domain proteins are also involved in adhesion complexes in C. elegans, UNC-95,
UNC-97/PINCH and UNC-98 (Broday et al., 2004; Hobert et al., 1999, Norman et al., unpublished; Mercer et al.,
2003). Of these three genes only unc-97 has a Pat null phenotype suggesting that like unc-112, pat-4 and pat-6, it is
involved with the very early stages of dense body and M-line organization (Hobert et al., 1999; Norman et al.,
unpublished). Indeed, in unc-97, unc-112, pat-4 and pat-6 mutants, integrin and vinculin are recruited to nascent
attachments but myofilaments are not recruited, and the stalled complexes never form a striated array. Although
additional experiments are needed to place UNC-97 relative to UNC-112, PAT-4 and PAT-6 on the assembly
dependence pathway, the biochemical data support the notion that these proteins work together during attachment
assembly. Similar to mammalian PINCH (Tu et al., 1999), UNC-97 binds to the carboxy portion of PAT-4/ILK and
is found in dense bodes and M-lines (Norman et al., unpublished; Hobert et al., 1999; Figure 4).

Null alleles of unc-95 and unc-98 affect myofilament organization and both proteins are located in dense
bodies and M-lines (Broday et al., 2004; Mercer et al., 2003). UNC-95 is first detected in dense bodes and is only
later found in M-lines as well, while UNC-98 is found initially in M-lines and only sporadically in dense bodies
(there is some disagreement here between GFP fusion and antibody results). UNC-98 has been shown to bind to
UNC-97/PINCH, but no binding studies have yet been done with UNC-95 and members of the PAT-4/ILK complex.
Curiously, vinculin levels within the dense body are dependent on UNC-95; loss of UNC-95 shows most vinculin
located within the cytosol, not within the dense body. However the animals are not Pat, which suggests that some
vinculin is present within the dense body as deb-1/vinculin null animals are Pat (Barstead and Waterston, 1991). In
addition to their role as attachment proteins, all three LIM proteins are found within the nucleus throughout muscle
development and growth (Figure 6). Whether any of these proteins shuttle between the nucleus and the plasma
membrane as demonstrated for zyxin (Nix et al., 2001) has not been tested. Their localization to both the nucleus
and the cytoplasm does make them candidate biosensors (Kadrmas and Beckerle, 2004).

Figure 6. Localization of UNC-97::GFP within muscle body wall muscle. (A) UNC-97 is found in dense bodies (red arrow) and M-lines (yellow arrow)
in mature muscle. (B) Within the same cells UNC-97 is found in a punctate or speckled pattern within the nucleus (red arrowhead).
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Figure 2, Figure 3, and Figure 5 suggest strong parallels between vertebrate and nematode attachment
complexes, but there are some differences. The binding of the complex of talin, vinculin and alpha-actinin to
integrin in vertebrates is through the FERM domain of talin (reviewed in Calderwood, 2004; Campbell and
Ginsberg, 2004). By analogy we suggest that C. elegans talin does the same. However, the PAT-4/ILK complex
behaves differently in vertebrates and C. elegans. In vertebrates ILK is the linker to integrin (Hannibal et al., 1996),
but in C. elegans and Drosophila it is not (Mackinnon et al., 2002; Zervas et al., 2001). We suggest that binding of
this complex to integrin may be mediated through UNC-112 since this protein when used as bait in a yeast
two-hybrid assay identified PAT-3 integrin as a binding partner (Hiroshi Qadota and DGM, unpublished results). No
follow-up binding studies have yet been done to confirm these findings but we find it intriguing that UNC-112,
similar to talin, has a FERM domain that may bind integrin.

The assembly pathway described here relies on epistasis analysis, which would not be possible without
mutants in each of the key molecules involved. The subset of Pat mutants described above may offer an entry point
into the spatial control of adhesion sites. ILK and its binding partners do not appear to interfere with the formation
of the "classical" talin vinculin adhesion complex, but removal of any member of the ILK complex inhibits the
formation of a functional sarcomere. Myosin and actin filament networks are not assembled into sarcomeres, but
even earlier, correct organization of integrin within the membrane is perturbed. Perhaps the role of the ILK complex,
including UNC-112, UNC-97 and PAT-6, is to give definition to integrin spacing within the plane of the muscle
plasma membrane. This spatial organization of integrin clusters may be achieved by linking the integrins to the
underlying cytoskeleton which then "tows" the complex into position. Obviously, this is still a working hypothesis
and needs to be verified through further experiments.

5. Distinguishing dense bodies from M-lines

The pathway described above gives an order of events starting at the cell membrane and progressing deeper
into the cell. At some point along this progression adhesion plaques are segregated into two pools, one destined to
be dense bodies and the other destined to be M-lines. These nascent adhesion plaques have at least nine proteins in
common including integrin, talin, the ILK complex and the various LIM proteins. Divergence into distinct actin and
myosin filament anchorage sites occurs after the addition of the ILK-binding complex, but presumably before
alpha-actinin is added to the dense body or UNC-89 is added to the M-line. It is noteworthy in this regard that null
mutations in alpha-actinin or unc-89 do not lead to a Pat phenotype (R. Barstead, personal commun; Benian et al.,
1996). In fact, alpha-actinin is not even present at this stage of embryogenesis. Vinculin (possibly along with
UNC-95) is the first component that is unique to the dense body over the M-line and is the first protein that allows
us to distinguish these two adhesion complexes. Is it the addition of vinculin that gives an adhesion complex its
specific identity as a dense body, and is an adhesion complex without vinculin by default an M-line? Consider a
model in which vinculin is the key factor capable of determining whether a developing complex becomes a dense
body or an M-line. The key issue would seem to be controlling the binding of vinculin to talin, perhaps by regulating
the accessibility of binding sites on these two molecules (Izard et al., 2004; Fillingham et al., 2005). As a
mechanism phosphorylation is one possibility that comes to mind, but one is then still faced with the problem of
how such a switch distinguishes the adhesion complex pools. More specifically, how might such a switch be
controlled spatially to create the characteristic, regular striated pattern of dense bodies and M-lines?

One idea that we explore further below in a speculative model is the possibility that the binary switch
described above is simply stochastic. In other words, the initial isotropic fields of immature attachment complexes
are randomly assigned either a dense body or M-line identity. How then is the ordered spatial array of dense bodies
and M-lines established? The pattern could be established through the subsequent "pruning" of complexes that do
not make productive transmembrane linkages. In our model a "productive" linkage is put under significant
mechanical tension, which stabilizes it. In this view, nascent complexes formed "in the wrong place" fail and are
disassembled, which frees their components to contribute to the continued growth of the appropriately positioned
dense bodies and M-lines. The binary switch is not used to produce the pattern, but instead, patterning occurs after
the switch has determined dense body/M-line fate. Below we speculate on mechanisms that might establish the
patterned array of dense bodies and M-lines.

6. Spacing of the components

While it may seem counter-intuitive, adhesion plaques are relatively dynamic structures within tissue culture
cells since they are not only important for adherence but are also necessary for cell motility. During nematode body
wall muscle development integrin clusters must also have some flexibility. This can be observed during muscle cell
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growth. A newly formed muscle cell is two sarcomeres wide and has filaments 5 µm long. In an adult animal this
same muscle cell will be 10 sarcomeres wide and have individual filaments as long as 10 µm (Waterston and
Francis, 1985). Muscle cell mass increases greatly from an L1 lava to an adult so that individual dense bodies and M
lines must also increase in size. A single A-band in an L1 larva has 100 filaments while an adult A-band may have
as many as 600 filaments (MacKenzie et al., 1978). Increased filament length implies increased spacing between
integrin clusters, and increased filament number implies larger integrin clusters. This latter point is important if the
dense body is to increase in size, which it does. There is much in the literature on integrin clustering and on what
some of the control elements may be (reviewed in Giancotti and Ruoslahti, 1999) and there are inroads being made
to explain mechanosensitivity of integrin sites and the dynamics of integrin turnover during cell migration
(Bershadsky et al., 2003; Wehrle-Haller and Imhof, 2002). However, with the notable exception of Ingber's theories
on tensegrity (Ingber, 1997), there is little information available to explain how proper spacing of integrin within the
plane of the membrane might be achieved.

Our model for the initial patterning of integrin into a proper array of dense bodies and M-lines relies on tissue
interaction between muscle and hypodermis, and requires tension produced by the developing myofilament lattice.
Several lines of evidence suggest that cytoskeletal patterning in muscle and hypodermis are tightly coupled during
sarcomere assembly. The first suggestive evidence comes from the observation that in adults the muscle adhesion
complexes and fibrous organelles (FO's) of the hypodermis, while not precisely aligned, do exhibit a tantalizing
similarity in spacing. Strong evidence that muscle may induce the underlying patterning of the hypodermis comes
from laser ablation experiments. Laser ablation of muscle precursors in the developing embryo leave substantial
gaps in the normally continuous muscle quadrants. Underneath the muscle gaps there is no perlecan in the basement
membrane (Moerman et al., 1996) and FO's fail to form in the underlying hypodermis (Hresko et al., 1999). One
interpretation of these observations is that body wall muscle cells provide a signal that positions FO's in the
hypodermis, and perhaps also induces FO assembly at appropriate sub cellular sites. Genetic analysis demonstrates
that the hypodermal transmembrane protein myotactin is a key component in this tissue interaction. In myotactin
loss-of-function mutants the FO's spread out laterally (and abnormally) into regions of hypodermis that are not in
contact with body wall muscle (Hresko et al., 1999). What is particularly fascinating about myotactin is how it
changes localization during the time of sarcomere assembly within body wall muscle. Initially myotactin is arranged
in a pattern coinciding with the arrays of newly formed dense body and M-lines in the attached muscle cell just
across the basement membrane, but at later stages of development myotactin moves from these nearly longitudinal
lines into a series of circumferential lines as it joins the hypodermal FO's (Hresko et al., 1999). Myotactin may
therefore be initially patterned by the muscle cell cytoskeleton.

There is also evidence that the hypodermis may influence muscle development and sarcomere assembly.
Embryonic elongation is driven by circumferential actin cables assembled within the hypodermis (Priess and Hirsh,
1986). Mutations in the only alpha spectrin gene in C. elegans, spc-1, disrupts the regular patterning of these cables,
causing the mutant embryos to elongate more slowly than normal, and eventually arrest at the two-fold length
(Norman and Moerman, 2002). Interestingly, the A-bands in the body wall muscles of these arrested spc-1 embryos
are much wider than normal, and are oriented at ~20 degrees to the longitudinal access instead of the normal ~6
degrees. This wider zone within muscle for myofilament organization correlates with wider than normal zones of
both UNC-52 depositions in the basement membrane and FO organization in the hypodermis. These changes in the
muscle cytoskeleton are not simply due to a failure to complete elongation as several Pat mutants limited to
expression in muscle (e.g., egl-19) exhibit normal myofilament orientation and A-band width (Norman and
Moerman, 2002). These effects on the spc-1 mutant muscle cells are also not simply caused by the absence of alpha
spectrin in the muscle cells. The unc-70 gene encodes beta-spectrin (Hammerlund et al., 2000), and in unc-70
mutants, alpha-spectrin remains cytoplasmic in body wall muscle cells, instead of localizing normally to the muscle
cell membrane. The mutant unc-70 embryos have normal muscle structure, suggesting that it is the loss of spectrin
activity in the hypodermis that is altering the patterning of muscle sarcomeres (Norman and Moerman, 2002).
Although the mechanism responsible for this effect remains to be elucidated, these results raise the interesting
possibility that the contracting hypodermis affects the amount of muscle cell surface area that comes into contact
with the hypodermis during the initial assembly of sarcomeres. This change in the basal surface of the muscle cell in
turn has a direct effect on the spatial orientation of the incipient sarcomeres, the width of the basement membrane
and, by extension, the width of FO's within the hypodermis.

As well as hypodermal/muscle contact there is evidence that mechanical tension is needed for the proper
formation of muscle-hypodermal cytoskeletal linkages. Body wall muscle cells never contract forcefully in Pat
mutants, and it appears that the resulting lack of tension blocks the normal development muscle-hypodermal
linkages. The myo-3 Pat mutants provide the best example. The myo-3 gene encodes myosin A protein, which is the
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central component of body wall muscle thick filaments (Waterston 1989). Despite the fact that myosin A is not a
structural component of muscle attachment complexes, linkages to the hypodermis are extremely weak in these
animals. This is shown by the frequent detachment of their dorsal muscle quadrants from the body wall near the
bend of the arrested two fold embryos. These detachments are a characteristic that is shared by a subset of Pat
embryos able to weakly contract their body wall muscle cells . In the myo-3 mutants, we speculate that these weak
movements are powered by other myosin isoforms expressed by the muscle cells.

Our model for how sarcomere spacing may be achieved is as follows. UNC-52/perlecan begins to accumulate
in the extracellular space separating two longitudinal rows of muscle cells making up each quadrant (green, Figure
7A), and then initiates the assembly of muscle attachments in the basal membrane adjacent the centerline of the
quadrant. The adhesions first appear as two parallel stripes closely flanking the quadrant centerline (black dots,
Figure 7A, also Figure 7E–G). The newly formed complexes are small and are randomly positioned within each of
the stripes. Actin filaments organize next through their association with the attachment complexes, resulting in two
large, longitudinally oriented bundles of actin filaments flanking the quadrant centerline (vertical red lines; Figure
7B; Figure 8). Myosin assembles into thick filaments and then forms larger aggregates (blue lines; Figure 7B-C) that
are dispersed throughout the muscle cell cytoplasm (see Epstein et al., 1993). The myosin aggregates interact with
the bundled actin filaments, and are also recruited to the centerline. Actin and myosin filaments begin to
interdigitate, and the resulting myofilament lattice begins to contract (Figure 7C). During the next phase of muscle
development a subset of the attachment complexes continue to grow and form longitudinal rows of uniformly
spaced dense bodies, while others are either disassembled or are repositioned to join the successful attachments. For
a dense body to persist during this phase it must be under significant tension from the myofilament lattice and must
also become mechanically linked to the actin cables in the adjacent hypodermis (Figure 7G). This process is
illustrated at the bottom of Figure 7B-D, which shows the loss of small integrin clusters from sites not immediately
adjacent to actin cables in the underlying hypodermis (black horizontal lines), and the simultaneous enlargement of
the remaining muscle-muscle attachment complexes (black half-circles; Figure 7D). These combined constraints
limit the locations where dense bodies can mature, and ultimately imposes the longitudinal spacing between these
mature attachments. The M-line complexes require only linkage to the center of myosin thick filaments to persist,
which permits the very close spacing that often appears as a continuous line (see Figure 7H-J). It is important to note
that because each muscle cell is two sarcomeres "wide", one end of every sarcomere is precisely positioned by the
intersecting "grid" of nearly longitudinal muscle-muscle junctions and the circumferential hypodermal actin cables
(Figure 7D). Thus, it may be this intersection that initially determines the spacing of dense bodies and M-lines. In
Figure 7G, we diagram a hypothetical "linker" protein that binds UNC-52, which in turn may be bound by integrin,
thus establishing a mechanical linkage that stabilizes the nascent dense body or muscle attachment plaque.

The idea that actin cytoskeleton in the hypodermis might establish the initial spacing of dense bodies is only
one of many possible mechanisms that might bring this about. We raise this idea because the muscle and
hypodermis are clearly interacting in important ways at this stage of development, and it is intriguing that the
spacing between actin cables and newly formed dense bodies is of the same order of magnitude. It should be noted,
however, that we are not aware of any data demonstrating that the position of actin cables and newly forming
muscle attachments coincides precisely, as this model predicts and is indicated in Figure 7.
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Figure 7. Model of sarcomere development showing several adjacent cells in one dorsal muscle quadrant at several successive developmental
stages. Developmental stage is indicated by the extent of elongation in embryo cartoons at the top. Wild-type (A-D) and spc-1 mutant embryos (E, F) are
shown. In panels A-F, muscle cells (white) are shown on top of the basal lamina (light green) and the basal face of the hypodermis (shaded gray). The
bottom of panels B-D show enlarged views of developing muscle attachments (black dots), with the position of hypodermal circumferential actin cables
indicated (black horizontal red lines). G shows a hypothetical linkage between muscle attachments and hypodermal actin cables involving a "linker
protein" bound to UNC-52/perlecan, which in turn binds integrin. Note that direct binding between integrin and UNC-52 has not been demonstrated in C.
elegans, although integrin-perlecan binding has been demonstrated in vertebrates. See text for further details.

Why are the dense body rows pitched ~6 degrees from the longitudinal axis? We propose that the angle is
imposed by shape of the muscle cells at the time when dense bodies and the related adhesion plaques (hemi-dense
bodies) become stabilized by linkage to the hypodermal cytoskeleton. The muscle cells have assumed a spindle
shape by the one-and-three-quarter-fold stage, and muscle-muscle junctions between anterior-posterior neighbors
are approximately 6 degrees from longitudinal. The intersections between these junctions and the nearly orthogonal
pattern of actin hypodermal actin cables define a series of points where attachment plaques will persist and mature
(unipolar dense bodies). Interestingly, in the spc-1 mutants elongation is much slower than normal, so dense bodies
and attachment plaques are "selected" when the muscle cells are in the "wrong" shape. The cells are much wider
than they should be for their chronological age, and the muscle-muscle junctions between anterior-posterior
neighbors are closer to 20 than to 6 degrees (Figure 7E–F). The A-bands, like the muscle cells, are too wide, and
their angle to the longitudinal axis is 20 degrees.
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Figure 8. View of a phalloidin stained 1.5 fold wild type embryo. (A) Whole embryo shown from a left dorsal view. Two bundles of actin filaments
running longitudinally along left dorsal muscle quadrant are visible. The outline of hypodermal cells is also visible as well the circumferential actin cables
(arrows). (B) A cross section of the embryo illustrating the polarized position of the actin filaments within the muscle cells. C and D are schematic views of
A and B respectively.

7. Is sarcomere assembly in C. elegans a general model of sarcomere assembly?

A key question is whether these studies on sarcomere assembly in C. elegans have any relevance for
mammalian muscle development. For several years those working on myogenesis in vertebrates largely ignored the
work on C. elegans sarcomere assembly. At the same time those working on adhesion complexes have used
observations in C. elegans and Drosophila melanogaster to advance our understanding of adhesion complexes in
mammals (reviewed in Labouesse and Georges-Labouesse, 2003). Three examples serve to illustrate this point.
First, recent studies on flies and worms demonstrate that ILK is an adaptor molecule and all of its behavior can be
explained as an adaptor molecule, not as a kinase (Zervas et al., 2001; Mackinnon et al., 2002; reviewed in Zervas
and Brown, 2002). These observations have been confirmed in mammals using an ILK knockout mouse (Sakai et
al., 2003). Second, it was the genetic analysis in C. elegans that first demonstrated the key roles of UNC-112,
UNC-97, PAT-4 and PAT-6 in the assembly of integrin attachment complexes. Third, the observation that
UNC-112/Mig-2 is localized to adhesion complexes, and binds ILK and PINCH, led Tu et al. (2003) to recapitulate
these results and do 2-hybrid screens for a novel Mig-2 binding partner. This led to the isolation of a protein with a
proline rich amino terminus and three LIM domains, Migfilin, which they demonstrated binds to filamin. This is the
first example linking filamin regulation of actin filaments to the integrin/vinculin pathway for actin filament
assembly. Finally, and to come full circle, the critical role played by beta 1 integrin in early mouse myogenesis has
recently been demonstrated. In a mouse mutant lacking beta 1 integrin, recruitment of talin and vinculin to
costamers is inhibited and proper rcomeres are not formed (Schwander et al., 2003). The phenotype observed is
reminiscent of Pat mutants in C. elegans confirming the phylogenetic conservation of integrin complexes in
sarcomere assembly.

8. Summary

We, and others, have made significant inroads into how a muscle sarcomere is initiated and some progress on
dissecting the assembly pathway that leads to this complex structure. However, there are several outstanding issues
that remain including "
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1. How does the cell distinguish adhesion sites destined to be dense bodies from those destined to be M-lines?

2. How is the precise spacing between sarcomere units generated and maintained throughout development?

3. How are actin and myosin microfilaments inserted into the nascent sarcomere, and then how is filament
length regulated as the animal grows?

These are difficult questions, ones that we think go to the heart of a very difficult problem in cytoarchitecture.
C. elegans may offer the best opportunity to solve these challenging problems in macromolecular assembly and
cellular organization.

9. Acknowledgements

We thank Ken Norman for Figure 8 and Hiroshi Qadota for permission to cite his data on UNC-112 binding to
integrin. This review benefited greatly from the insightful comments of an anonymous reviewer. Research in the
laboratory of DGM relevant to this review was supported by grants from the Canadian Institute for Health Research,
the National Science and Engineering Research Council of Canada, the Heart and Stroke Foundation of Canada and
the Health Research Foundation of British Columbia. Research in the laboratory of BDW relevant to this review was
supported by grants from the National Institutes of Health (R01 HD38646) and the American Heart Association,
Midwest Affiliate.

10. References

Barstead, R.J., and Waterston, R.H. (1991). Cloning, sequencing and mapping of an alpha-actinin gene from the
nematode Caenorhabditis elegans. Cell Motil. Cytoskeleton 20, 69–78. Abstract Article

Barstead, R.J., and Waterston, R.H. (1991). Vinculin is essential for muscle function in the nematode. J. Cell Biol.
114, 715–724. Abstract Article

Benian, G.M., Tinley, T.L., Tang, X., and Borodovsky, M. (1996). The Caenorhabditis elegans gene unc-89,
required fpr muscle M-line assembly, encodes a giant modular protein composed of Ig and signal transduction
domains. J. Cell Biol. 132, 835–848. Abstract Article

Bercher, M., Wahl, J., Vogel, B.E., Lu, C., Hedgecock, E.M., Hall, D.H., and Plenefisch, J.D. (2001). mua-3, a gene
required for mechanical tissue integrity in Caenorhabditis elegans, encodes a novel transmembrane protein of
epithelial attachment complexes. J. Cell Biol. 154, 415–426. Abstract Article

Bershadsky, A.D., Balaban, N.Q., and Geiger, B. (2003). Adhesion-dependent cell mechnosensitivity. Annu. Rev.
Cell Dev. Biol. 19, 677–695. Abstract Article

Bosher, J.M., Hahn, B.S., Legouis, R., Sookhareea, S., Weimer, R.M., Gansmuller, A., Chisholm, A.D., Rose, A.M.,
Bessereau, J.L., and Labouesse, M. (2003). The Caenorhabditis elegans vab-10 spectraplakin isoforms protect the
epidermis against internal and external forces. J. Cell Biol. 161, 757–768. Abstract Article

Broday, L., Kolotuev, I., Didier, C., Bhoumik, A., Podbilewicz, B., and Ronai, Z. (2004). The LIM domain protein
UNC-95 is required for the assembly of muscle attachment structures and is regulated by the RING finger protein
RNF-5 in C. elegans. J. Cell Biol. 165, 857–867. Abstract Article

Brown, J.C., Sasaki, T., Gohring, W., Yamada, Y., and Timpl, R. (1997). The C-terminal domain V of perlecan
promotes beta1 integrin-mediated cell adhesion, binds heparin, nidogen and fibulin-2 and can be modified by
glycosaminoglycans. Eur. J. Biochem. 250, 39–46. Abstract Article

Burridge, K., and Chrzanowska-Wodnicka, M. (1996). Focal adhesions, contractility, and signaling. Annu. Rev. Cell
Dev. Biol. 12, 463–518. Abstract Article

Calderwood, D.A. (2004). Taliin controls integrin activation. Biochem. Sci. Transactions 32(pt3), 434–437. Article

Sarcomere assembly in C. elegans muscle

13

http://www.wormbase.org/db/seq/protein?name=UNC-112;class=protein
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=1756579&dopt=Abstract
http://dx.doi.org/10.1002/cm.970200108
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=1907975&dopt=Abstract
http://dx.doi.org/10.1083/jcb.114.4.715
http://www.wormbase.org/db/gene/gene?name=unc-89
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=8603916&dopt=Abstract
http://dx.doi.org/10.1083/jcb.132.5.835
http://www.wormbase.org/db/gene/gene?name=mua-3
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=11470828&dopt=Abstract
http://dx.doi.org/10.1083/jcb.200103035
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=14570586&dopt=Abstract
http://dx.doi.org/10.1146/annurev.cellbio.19.111301.153011
http://www.wormbase.org/db/gene/gene?name=vab-10
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=12756232&dopt=Abstract
http://dx.doi.org/10.1083/jcb.200302151
http://www.wormbase.org/db/seq/protein?name=UNC-95;class=protein
http://www.wormbase.org/db/seq/protein?name=RNF-5;class=protein
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=15210732&dopt=Abstract
http://dx.doi.org/10.1083/jcb.200401133
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=9431988&dopt=Abstract
http://dx.doi.org/10.1111/j.1432-1033.1997.t01-1-00039.x
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=8970735&dopt=Abstract
http://dx.doi.org/10.1146/annurev.cellbio.12.1.463
http://dx.doi.org/10.1042/BST0320434


Campbell, I.D., and Ginsberg, M.H. (2004). The talin-tail interaction places integrin activation on FERM ground.
Trends Biochemcal Sciences 8, 429–435. Article

Chakravarti, S., Horchar, T., Jefferson, B., Laurie, W., and Hassell, J.R. (1995). Recombinant domain III of perlecan
promotes cell attachment through its RGDS sequence. J. Biol. Chem. 270, 404–409. Abstract Article

Cox, E.A., and Hardin, J. (2004). Sticky worms: adhesion coomplexes in Caenorhabditis elegans. J. Cell Sci. 117,
1885–1897. Abstract Article

Ding, M., Goncharov, A., Jin, Y., and Chisholm, A.D. (2003). C. elegans ankyrin repeat protein VAB-19 is a
component of epidermal attachment structures and is essential for epidermal morphogenesis. Development 130,
5791–5801. Abstract Article

Epstein, H.F., Casey, D.L., and Ortiz, I. (1993). Myosin and paramyosin of Caenorhabditis elegans embryos
assemble into nascent structures distinct from thick filaments and multi-filament assemblages. J. Cell Biol. 122,
845–858. Abstract Article

Fillingham, I., Gingras, A.R., Papagrigoriou, E., Patel, B., Emsley, J., Critchley, D.R., Roberts, G.C., and Barsukov,
I.L. (2005). A vinculin binding domain from the talin rod unfolds to form a complex with the vinculin head.
Structure (Camb.) 13, 65–74. Article

Francis, G.R., and Waterston, R.H. (1985). Muscle organization in Caenorhabditis elegans: localization of proteins
implicated in thin filament attachment and I-band organization. J. Cell Biol. 101, 1532–1549. Abstract Article

Francis, R., and Waterston, R.H. (1991). Muscle cell attachment in Caenorhabditis elegans. J. Cell Biol. 114,
465–479. Abstract Article

Geiger, B., and Bershadsky, A. (2001). Assembly and mechanosensory function of focal contacts. Curr. Opin. Cell
Biol. 13, 584–592. Abstract Article

Gettner, S.N., Kenyon, C., and Reichardt, L.F. (1995). Characterization of beta pat-3 heterodimers, a family of
essential integrin receptors in C. elegans. J. Cell Biol. 129, 1127–1141. Abstract Article

Giancotti, F.G., and Ruoslahti, E. (1999). Integrin signaling. Science 285, 1028–1032. Abstract Article

Hammerlund, M., Davis, W.S., and Jorgensen, E.M. (2000). Mutations in Beta-spectrin disrupt axon outgrowth and
muscle attachment structures. J. Cell Biol. 149, 931–942. Article

Hannigan, G.E., Leung-Hagesteijn, C., Fitz-Gibbon, L., Coppolino, M.G., Radeva, G., Filmus, J., Bell, J.C., and
Dedhar, S. (1996). Regulation of cell adhesion and anchorage-dependent growth by a new beta 1-integrin-linked
protein kinase. Nature 379, 91–96. Abstract Article

Hapiak, V., Hresko, M.C., Schriefer, L.A., Saiyasisongkhram, K., Bercher, M., and Plenefisch, J. (2003). mua-6, a
gene required for tissue integrity in Caenorhabditis elegans, encodes a cytoplasmic intermediate filament. Dev.
Biol. 263, 330–342. Abstract Article

Hayashi, K., Madri, J.A., and Yurchenco, P.D. (1992). Endothelial cells interact with the core protein of basement
membrane pelecan through beta 1 and beta 3 integrins: an adhesion modulated by glycosaminoglycan. J. Cell Biol.
119, 945–959. Abstract Article

Hobert, O., Moerman, D.G., Clark, K.A., Beckerle, M.C., and Ruvkun, G. (1999). A conserved LIM protein that
affects muscular adherens junction integrity and mechanosensory function in Caenorhabditis elegans. J. Cell Biol.
144, 45–57. Abstract Article

Hong, L., Elbl, T., Ward, J., Franzini-Armstrong, C., Rybicka, K.K., Gatewood, B.K., Baillie, D.L., and Bucher,
E.A. (2001). MUP-4 is a novel transmembrane protein with functions in epithelial cell adhesion in Caenorhabditis
elegans. J. Cell Biol. 154, 403–414. Abstract Article

Hresko, M.C., Schriefer, L.A., Shrimankar, P., and Waterston, R.H. (1999). Myotactin, a novel hypodermal protein

Sarcomere assembly in C. elegans muscle

14

involved in muscle-cell adhesion in Caenorhabditis elegans. J. Cell Biol. 146, 659–672. Abstract Article

http://dx.doi.org/10.1016/j.tibs.2004.06.005
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=7814401&dopt=Abstract
http://dx.doi.org/10.1074/jbc.270.1.404
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=15090594&dopt=Abstract
http://dx.doi.org/10.1242/jcs.01176
http://www.wormbase.org/db/seq/protein?name=VAB-19;class=protein
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=14534136&dopt=Abstract
http://dx.doi.org/10.1242/dev.00791
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=8349734&dopt=Abstract
http://dx.doi.org/10.1083/jcb.122.4.845
http://dx.doi.org/10.1016/j.str.2004.11.006
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=2413045&dopt=Abstract
http://dx.doi.org/10.1083/jcb.101.4.1532
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=1860880&dopt=Abstract
http://dx.doi.org/10.1083/jcb.114.3.465
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=11544027&dopt=Abstract
http://dx.doi.org/10.1016/S0955-0674(00)00255-6
http://www.wormbase.org/db/gene/gene?name=pat-3
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=7744961&dopt=Abstract
http://dx.doi.org/10.1083/jcb.129.4.1127
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=10446041&dopt=Abstract
http://dx.doi.org/10.1126/science.285.5430.1028
http://dx.doi.org/10.1083/jcb.149.4.931
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=8538749&dopt=Abstract
http://dx.doi.org/10.1038/379091a0
http://www.wormbase.org/db/gene/gene?name=mua-6
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=14597206&dopt=Abstract
http://dx.doi.org/10.1016/j.ydbio.2003.08.001
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=1385448&dopt=Abstract
http://dx.doi.org/10.1083/jcb.119.4.945
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=9885243&dopt=Abstract
http://dx.doi.org/10.1083/jcb.144.1.45
http://www.wormbase.org/db/seq/protein?name=MUP-4;class=protein
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=11470827&dopt=Abstract
http://dx.doi.org/10.1083/jcb.200007075
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=10444073&dopt=Abstract
http://dx.doi.org/10.1083/jcb.146.3.659


Hresko, M.C., Williams, B.D., and Waterston, R.H. (1994). Assembly of body wall muscle and muscle cell
attachment structures in Caenorhabditis elegans. J. Cell Biol. 124, 491–506. Abstract Article

Ingber, D.E. (1997). Tensegrity: the architectural basis of cellular mechanotransduction. Annu. Rev. Physiol. 59,
575–599. Abstract Article

Izard, T., Evans, G., Borgon, R.A., Rush, C.L., Bricogne, G., and Bois, P.R. (2004). Vinculin activation by talin
through helical bundle conversion. Nature 427, 171–175. Abstract Article

Kadrmas, J.L., and Beckerle, M.C. (2004). The LIM domain: from the cytoskeleton to the nucleus. Nat. Rev. Mol.
Cell Biol. 5, 920–931. Abstract Article

Labouesse, M., and Georges-Labouesse, E. (2003). Cell adhesion: parallels between vertebrate and invertebrate
focal adhesions. Curr. Biol. 13, R528–R530. Abstract Article

Lin, X., Qadota, H., Moerman, D.G., and Williams, B.D. (2003). C. elegans PAT-6/actopaxin plays a critical role in
the assembly of integrin adhesion complexes in vivo. Curr. Biol. 13, 922–932. Abstract Article

Mackenzie, J.M., Jr., Garcea, R.L., Zengel, J.M., and Epstein, H.F. (1978). Muscle development in Caenorhabditis
elegans: mutants exhibiting retarded sarcomere construction. Cell 15, 751–762. Abstract Article

Mackinnon, A.C., Qadota, H., Norman, K.R., Moerman, D.G., and Williams, B.D. (2002). C. elegans PAT-4/ILK
functions as an adaptor protein within integrin adhesion complexes. Curr. Biol. 12, 787–797. Abstract Article

Mercer, K.B., Flaherty, D.B., Miller, R.K., Qadota, H., Tinley, T.L., Moerman, D.G., and Benian, G.M. (2003).
Caenorhabditis elegans UNC-98, a C2H2 Zn finger protein, is a novel partner of UNC-97/PINCH in muscle
adhesion complexes. Mol. Biol. Cell 14, 2492–2507. Abstract Article

Moerman, D.G., and Fire, A. (1997). Muscle: Structure, function and development. In C. elegans II, D.L. Riddle, T.
Blumenthal, B.J. Meyer, and J.R. Priess, eds. (Cold Spring Harbor: Cold Spring Harbor Press), pp. 417–470.

Moerman, D.G., Hutter, H., Mullen, G.P., and Schnabel, R. (1996). Cell autonomous expression of perlecan and
plasticity of cell shape in embryonic muscle of Caenorhabditis elegans. Dev. Biol. 173, 228–242. Abstract Article

Moulder, G.L., Huang, M.M., Waterston, R.H., and Barstead, R.J. (1996). Talin requires beta-integrin, but not
vinculin, for its assembly into focal adhesion-like structures in the nematode Caenorhabditis elegans. Mol. Biol.
Cell 7, 1181–1193. Abstract

Mullen, G.P., Rogalski, T.M., Bush, J.A., Gorji, P.R., and Moerman, D.G. (1999). Complex patterns of alternative
splicing mediate the spatial and temporal distribution of perlecan/UNC-52 in Caenorhabditis elegans. Mol. Biol.
Cell 10, 3205–3221. Abstract

Nix, D.A., Fradelizi, J., Bockholt, S., Menichi, B., Louvard, D., Friederich, E., and Beckerle, M.C. (2001). Targeting
of zyxin to sites of actin membrane interaction and to the nucleus. J. Biol. Chem. 276, 34759–34767. Abstract
Article

Norman, K.R., and Moerman, D.G. (2002). Alpha spectrin is essential for morphogenesis and body wall muscle
formation in Caenorhabditis elegans. J. Cell Biol. 157, 665–677. Abstract Article

Priess, J.R., and Hirsh, D. (1986). Caenorhabditis elegans morphogenesis: The role of the cytoskeleton in the
elongation of the embryo. Dev. Biol. 117, 156–173. Abstract Article

Rogalski, T.M., Mullen, G.P., Gilbert, M.M., Williams, B.D., and Moerman, D.G. (2000). The UNC-112 gene in
Caenorhabditis elegans encodes a novel component of cell-matrix adhesion structures required for integrin
localization in the muscle cell membrane. J. Cell Biol. 150, 253–264. Abstract Article

Rogalski, T.M., Williams, B.D., Mullen, G.P., and Moerman, D.G. (1993). Products of the unc-52 gene in
Caenorhabditis elegans are homologous to the core protein of the mammalian basement membrane heparan sulfate

Sarcomere assembly in C. elegans muscle

15

proteoglycan. Genes Dev. 7, 1471–1484. Abstract

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=8106548&dopt=Abstract
http://dx.doi.org/10.1083/jcb.124.4.491
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=9074778&dopt=Abstract
http://dx.doi.org/10.1146/annurev.physiol.59.1.575
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=14702644&dopt=Abstract
http://dx.doi.org/10.1038/nature02281
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=15520811&dopt=Abstract
http://dx.doi.org/10.1038/nrm1499
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=12842032&dopt=Abstract
http://dx.doi.org/10.1016/S0960-9822(03)00448-2
http://www.wormbase.org/db/seq/protein?name=PAT-6;class=protein
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=12781130&dopt=Abstract
http://dx.doi.org/10.1016/S0960-9822(03)00372-5
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=728988&dopt=Abstract
http://dx.doi.org/10.1016/0092-8674(78)90261-1
http://www.wormbase.org/db/seq/protein?name=PAT-4;class=protein
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=12015115&dopt=Abstract
http://dx.doi.org/10.1016/S0960-9822(02)00810-2
http://www.wormbase.org/db/seq/protein?name=UNC-98;class=protein
http://www.wormbase.org/db/seq/protein?name=UNC-97;class=protein
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=12808046&dopt=Abstract
http://dx.doi.org/10.1091/mbc.E02-10-0676
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=8575624&dopt=Abstract
http://dx.doi.org/10.1006/dbio.1996.0019
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=8856663&dopt=Abstract
http://www.wormbase.org/db/seq/protein?name=UNC-52;class=protein
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=10512861&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=11395501&dopt=Abstract
http://dx.doi.org/10.1074/jbc.M102820200
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=11994313&dopt=Abstract
http://dx.doi.org/10.1083/jcb.200111051
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=3743895&dopt=Abstract
http://dx.doi.org/10.1016/0012-1606(86)90358-1
http://www.wormbase.org/db/seq/protein?name=UNC-112;class=protein
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=10893272&dopt=Abstract
http://dx.doi.org/10.1083/jcb.150.1.253
http://www.wormbase.org/db/gene/gene?name=unc-52
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=8393416&dopt=Abstract


Sakai, T., Li, S., Docheva, D., Grashoff, C., Sakai, K., Kostka, G., Braun, A., Pfeifer, A., Yurchenco, P.D., and
Fassler, R. (2003). Integrin-linked kinase (ILK) is required for polarizing the epiblast, cell adhesion, and controlling
actin accumulation. Genes Dev. 17, 926–940. Abstract Article

Schnabel, R., Hutter, H., Moerman, D., and Schnabel, H. (1997). Assessing normal embryogenesis in
Caenorhabditis elegans using a 4D microscope: variability of development and regional specification. Dev. Biol.
184, 234–265. Abstract Article

Schwander, M., Leu, M., Stumm, M., Dorchies, O.M., Ruegg, U.T., Schittny, J., and Muller, U. (2003). Beta1
integrins regulate myoblast fusion and sarcomere assembly. Dev. Cell 4, 673–685. Abstract Article

Sulston, J.E., Schierenberg, E., White, J.G., Thomson, J.N. (1983). The embryonic cell lineage of the nematode
Caenorhabditis elegans. Dev Biol. 100, 64–119. Abstract

Tu, Y., Li, F., Goicoechea, S., and Wu, C. (1999). The LIM-only protein PINCH directly interacts with
integrin-linked kinase and is recruited to integrin-rich sites in spreading cells. Mol. Cell Biol. 19, 2425–2434.
Abstract

Tu, Y., Wu, S., Shi, X., Chen, K., and Wu, C. (2003). Migfilin and Mig-2 link focal adhesions to filamin and the
actin cytoskeleton and function in cell shape modulation. Cell 113, 37–47. Abstract Article

Waterston, R.H. (1988). Muscle. In The nematode Caenorhabditis elegans, W.B. Wood, ed. (Cold Spring Harbor:
Cold Spring Harbor Press), pp. 281–335.

Waterston, R.H. (1989). The minor myosin heavy chain gene, MHC A, of Caenorhabditis elegans is necessary for
the intitiation of thick filament assembly. EMBO J. 8, 3429–3436. Abstract

Waterston, R.H., and Francis, G.R. (1985). Genetic analuysis of muscle development in Caenorhabditis elegans.
Trends Neurosci. 84, 270–276. Article

Wehrle-Haller, B., and Imhof, B.A. (2002). The inner lives of focal adhesions. Trends Cell Biol. 12, 382–389.
Abstract Article

Williams, B.D., and Waterston, R.H. (1994). Genes critical for muscle development and function in Caenorhabditis
elegans identified through lethal mutations. J. Cell Biol. 124, 475–490. Abstract Article

Zervas, C.G., and Brown, N.H. (2002). Integrin adhesion: when is a kinase a kinase? Curr. Biol. 12, R350–R351.
Abstract Article

Zervas, C.G., Gregory, S.L., and Brown, N.H. (2001). Drosophila integrin-linked kinase is required at sites of
integrin adhesion to link the cytoskeleton to the plasma membrane. J. Cell Biol. 152, 1007–1018. Abstract Article

Sarcomere assembly in C. elegans muscle

16

 All WormBook content, except where otherwise noted, is licensed under a Creative 
Commons Attribution License

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=12670870&dopt=Abstract
http://dx.doi.org/10.1101/gad.255603
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=9133433&dopt=Abstract
http://dx.doi.org/10.1006/dbio.1997.8509
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=12737803&dopt=Abstract
http://dx.doi.org/10.1016/S1534-5807(03)00118-7
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=6684600&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=10022929&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=12679033&dopt=Abstract
http://dx.doi.org/10.1016/S0092-8674(03)00163-6
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=2583106&dopt=Abstract
http://dx.doi.org/10.1016/0166-2236(85)90101-8
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=12191915&dopt=Abstract
http://dx.doi.org/10.1016/S0962-8924(02)02321-8
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=8106547&dopt=Abstract
http://dx.doi.org/10.1083/jcb.124.4.475
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=12015134&dopt=Abstract
http://dx.doi.org/10.1016/S0960-9822(02)00856-4
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=11238456&dopt=Abstract
http://dx.doi.org/10.1083/jcb.152.5.1007
http://creativecommons.org/licenses/by/2.5/
http://creativecommons.org/licenses/by/2.5/

	Sarcomere assembly in C. elegans muscle
	Table of Contents
	1. Introduction
	2. Muscle attachments
	3. Dissection of muscle attachment assembly
	4. Initiating a sarcomere leads to distinct assembly dependence pathways for dense bodies and M-lines
	5. Distinguishing dense bodies from M-lines
	6. Spacing of the components
	7. Is sarcomere assembly in C. elegans a general model of sarcomere assembly?
	8. Summary
	9. Acknowledgements
	10. References

